If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+1=23
We move all terms to the left:
4x^2+1-(23)=0
We add all the numbers together, and all the variables
4x^2-22=0
a = 4; b = 0; c = -22;
Δ = b2-4ac
Δ = 02-4·4·(-22)
Δ = 352
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{352}=\sqrt{16*22}=\sqrt{16}*\sqrt{22}=4\sqrt{22}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{22}}{2*4}=\frac{0-4\sqrt{22}}{8} =-\frac{4\sqrt{22}}{8} =-\frac{\sqrt{22}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{22}}{2*4}=\frac{0+4\sqrt{22}}{8} =\frac{4\sqrt{22}}{8} =\frac{\sqrt{22}}{2} $
| 1/2(10/3n+1)=3/5 | | Y=6x+x | | 6x-27=33-4x | | 25=a/2 | | -4x+2=x^2-3x | | 2.5x-5=2x+1 | | a-32=14 | | 00.9x=-6.3 | | 2x-29=8 | | (4y-10)=138 | | -28/19+n=-43/19 | | 10x=-69 | | y=-3*2-1 | | 36*x=120 | | 4x+22+7x-9=123 | | x-3=8x+x | | y=-3*1-1 | | 1=y/3 | | 480-x-1/2x=3x-60 | | 0.25(6x-1)=x+1.25 | | 3x+2-x=28 | | -2.7-p=-7.3 | | -9n=-7n+8 | | y=-3*0-1 | | 0.25(6x-1)=2.5x+0.25 | | 17w=9w+64 | | 0.25(6x-1)=1.5x+0.25 | | 2/5x+4=6-8/5x | | -18+y=6(2–3y) | | 50+6+3x+2x=2100 | | 45=5x+25 | | -9f=-10f+9 |